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Abstract

The “classical limit” of the q-analogue quantized radiation field is studied paralleling con-
ventional quantum optics analyses. The g-generalizations of the phase operator of Susskind
and Glogower (circa 1964) and that of Pegg and Barnett (circa 1988) are constructed. Both
generalizations and their associated number-phase uncertainty relations are manifestly q-
independent in the [n >, number basis. However, in the q-coherent state |z >4 basis, the
variance of the generic electric field, (AE)?, is found to be increased by a factor A(z) where
Az) > 1if ¢ # 1. At large amplitudes, the amplitude itself would be quantized if the avail-
able resolution of unity for the g-analogue coherent states is accepted in the formulation.
These consequences are remarkable versus the conventional ¢ = 1 limit.

1 Introduction

On several occasions during the last fifty years, new mathematical symmetries have been con-
structed in theoretical physics but only found to be relevant to nature five or more years later. If
this is occurring now in the case of quantum algebras, we need to know the physical implications
of these new and distinctly novel symmetry structures. If there are g-oscillators in nature which
realize these new algebras, surely there must be a quantum field which has such q-oscillators as its
normal modes. Until we know the physical properties of such a field , say in its “classical limit”,
we may not be able to glean its distinct relevance to problems and phenomena in quantum optics,
many body physics, particle physics ....

2 A Completeness Relation for the qg-Analogue Coherent
States by q-Integration

The g-analogue coherent states |z >, satisfy a|2 >o= z|z >, where the q-oscillator algebra is (1]
( ¢ — 1, usual bosons)
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aal - ql/’ata = q~N/? (1)
[N,al] = of [N,a]=-a (2)

It is physically very important that there remains the mathematically trivial bosonic [a,a] = 0.
In the |n >, basis, < m|n >= §,,, and!

aTIn >=4/[n+1jjn+1> aln >= \/WIn—l > al0 >=10 (3)

where [z]; = [z] = (¢°/* — ¢7*/?)/(¢}/* — ¢"1/?) is the “g-deformation” of z. More simply
[z] = sinh(sz/2)/sinh(s/2) where ¢ = exps, 0 < ¢ < 1.

The q-analogue coherent states |z >, are good candidates for studying the classical limit of
the g-analogue quantized radiation field because (i) there exists a resolution of unity 2]

I= / |2 >< z[dy(z) (4)

(ii) they indeed are “minimum uncertainty states for they do minimize the fundamental commu-
tation relation

2AQAP - | < [Q,P] > |

Ugp = >0 5

o <eA>1 2" (5)

with Ul'” = 0 b“t Ulln>#lﬂ> = %ﬁ%, and (iii) the n** order correlation function factorizes,
i.e. I Al ;

Tr(pE~(2)B*(y)) = £ (2)E* o). .. -

But slmultaneously, there are intriguing differences in the |z >, basis for other coherence and
uncertainty properties of the g-analogue quantized field. Some of these will be discussed as we go
along. -

In the |z >, basis, from a|z >= z|z > it follows that for < 2|z >=1

E >,= N(z) Z

n=0 \/ﬁ

“in terms of the “g-exponential function”

n>, N(2) = eg(l)1/2 o

ad ﬂ

ZOEPIS =l -1, [0t =1 (8)

which is an entire function |ey(2)] < e,(]2]) < ezp(|z|). For z > 0, it’s positive, but for z < 0 it
wildly oscillates within these bounds!
To derive the resolution of umty, we need a lemma, which is a q-analoque of Euler’s formula
We define the q-derivative = - - = - S
_ fan)  f(g )

ot = L S | (9)

!From now on the sub-q’s are usually implicit!
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and for f(z) on the interval [0, a, the inverse operation

¢ - o= Antl n
/0 f(z)dz = a(g7? = g3 g+ f(g®V ). (10)
n=0
So, for instance Zj—,a-"’" = a[n]z", af;eq(az) = aey(az) and inversely [az""1d,z = az"/[n],

J ej(az) d,z = e,(az)/a up to the constants. It follows that there are two integration by parts
formulas

[} #0) (e s(e) d = Feelelzzs = [ 7 hola™ ) s (1)

and the ¢ — 1/q expression.
We define —( =largest zero of e,(z) and restrict e,(z) = [ Xolo [‘T'i, for—( < z; O,otherwise] .
Then by the first integration by parts formula

/ “e(—2)e" dyz = [n]! (12)

From this the resolution of unity simply follows for the measure
L e
27 °

du(z) = s—eq(l2")eq(—2I")dy2]" 40 (13)

since
-] |zlnlz-‘m

3] & X el

/|z >< 2| dp(z)

n=0m=0
/ exp (i(n — m)8)dbln >< m| (14)
= ; [;1]—' /OG 2" e (—z) dgz |n >< 1|, z = |z|? (15)
= i|n><nl =1 (16)

Several remarks are appropriate:(i) states with |z|* > {; do not contribute,(ii) arbitrary |z >,
coherent states are not orthogonal since < al >= N(a)N(B)eg (a*B) # 0 (iii) the [z >qare
actually overcomplete, since

e >q= / |z >< z|a > du(z2), < zla >#0, (17)

(iv) with f(z) =< z|f >, the af,aact < zla,tlf >= 2*f(z), and < z|a|f >= N(z)#"l.N(z)‘1 f(2),

(v) any zero of e;(—(;) = 0 can be the upper endpoint of integration provided something restricts

e,(z) beyond —¢;. If not, on the rhs of (12) there is also 7, = —[n]' T r0 F‘_l—k]-!(ql/z:ck)”’keq(—:ck)
where zj = ¢*/?|¢;] . This restriction occurs if there are g-discrete auxillary states (|zx|? = zx)

) 1/42 i

‘Zk >q= Mk Z u

Bl l7+k>, k|2 >q= (g"*2k)|2k >4 (18)
3=0 7!

with k = 0,1,...; Mk = e,(g"/?|2|?)~1/?; with a discrete measure dji; = ?’;J—h,eq(—ﬁk[’)dﬁ .
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3 The g-Analogue Quantized Radiation Field and Its
Uncertainty Relations

In analyzing the field in the |z >, classical limit, we suppress the * mode and ¢ polarization
indices for the generic electric and magnetic ﬁelds etc. . There are diagonal representations of
operators, e.g. the single-mode density operator

p= [ du(z)gn(z, 2"z >< 2| (19)

where [ du(z) qSN(z 2*)=1asTr(p) = 1;50 < (aT) a’ >=Trlp(a 1') a’] = [du(z2)(z*) 2*dn(z,2°%).
Similarly, < @ (a. )t >= Jdpu(z) 2" (2* ) YN (2, 2*) for ¥n(z,2*) =< z|plz >, [dp(z)¥n(z, z* ) =1,

and so
Iv(a =) = [ duly) dw(, 3 IN )N () ely=")es(z3") (20)

Note that due to the use of g-integration to obtain (16), a new “ g-quantization” in the z
complex plane has occurred, e.g. ¢n contributes to (19) only when

2 = g0/ p—01,2,.... (21)

Consequently, for the generic electric and magnetic fields

~ . A - . 7 hrd i
E = i(hw/26,V )/ [ae kmewn _ gtemitk T )] (22)
with z = |z| exp(8),

< 2|Blz >= —2(hw/2¢V)? |2| sin(F - 7 — wt + 8) (23)

which indeed “looks ” like a classical field but the possible a,mphtudes are g-quantized; the modulus
squared assumes a geometric series of discrete values.

With the usual dcﬁmtxons P = —i(hw/2)3(a - a ) y Q= (B/2w)?(a + at), the fractional
uncertainties @-Q;! and }_<?_;I are of O(1) for |z| — oo and '

< 2|[Q,Pllz> =< z|[a,al]jz > = ikA(z) > ik (24)

where the important function ( ¢ = exps )

Az) = N(z)? i i ﬂ{c:;ll(:s(hz&;)l)ﬂ)

n=0

(25)

goes as (¢71/2 — 1)|z|? + 1 as |z| — oo. However, AQAP = 1/2| < [Q, P] > | for |z >, expectation
values, per (5).
For the generic electnc field, in the In >q basis

(AE),, = (hw/2¢V)([n + 1] + [n]) (26)
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Instead, in the|z >, basis
(AEY, = (hw/2¢V) < z|[e,al]lz >= (hw/26V) A(2) (27)

and so the fractional uncertainty in amp E ( or B ) is also of O(1). Note that from (25)
A(z) = N(z)%eq(]2|?/q*?) — |2|*(1 — ¢*/*) . There is a curious operator identity for g # 1

(—(i/R)[Q, P] cosh(s/4))? — ((2/hw)H sinh(s/4))* = 1 (28)

which fundamentally relates the basic commutation relation and the single-mode hamiltonian? |
( quadratic in P,Q )

H = (1/2)hw(ata + aal) = (1/2)(P? + w?0?). (29)

We get for (1—g) small, that A(z) >~ \/1 + ((2E/hw)? — 4AE/hw) tanh®(s/4) where E = E5 — hw/2
for i =< z|N|z > or < z|[N]|z > , s0 A depends on the deviation from the vacuum energy.
4 q-Generalizations of the Phase Operators

Since z’s magnitude may be q-quantized as in basic analysis, we next consider possible phase
operators. Recall z = |z]exp(i§) and that mathematically a hermitian phase operator conjugate

to N, to [N] = ala, or to H does not exist [3].
An &zp(id), generalization of the phase operator of Susskind-Glogower [3] is defined by [4]

a = ([N +1))"*ezp(ig) ot = @p(—ig)((V + 1))'/? (30)

and there are hermitian operators

co3(¢) = (1/2)[ezp(i¢) + éxp(—id)] sin(¢) = (1/2i)[ezp(i¢) — ézp(—ig)]- (31)
These generalizations give many q-independent operator commutation relations , see [4]. So, from
[N, é03(¢)] = —i3in(4),... the usual number-phase uncertainty relations follow for arbitrary q:

AN AZo3(8) 2 (1/2)] < sin(¢) > | AN Asin(¢) 2 (1/2)] < @os(4) > | (32)

In the |n >, basis, these definitions (30-31) correspond to

ézp(ig), = i n >< n+ 1] (33)

n=0

which is manifestly q-independent in |n >, non-unitary, and a q-analogue of the SG operator.

3For H, the energy is not additive for two widely separated systems, violating the usual cluster decomposition
“axiom” in quantum field theory. But, for g-quanta this is not unreasonable since the fractional uncertainty in the
energy based on H is also O(1) in the |z > basis and the quanta by (1) are compelled to be always interacting,i.c.
by exclusion-principle-like g-forces! An alternative hamiltonian is Hy = hw(N + 1/2) where N is the number

operator and it has the usual free-quanta additivity, etc. .
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Analogously, a g-generalization of the Pegg and Barnett operator [5] is obtained [4] by introduc-
ing a complete, orthonormal basis of (s+1) phase states |0, >,= (s+1)"Y2 3! _ exp (inf,,)|n >,
b =00+2mn/(s+1),withm =0,1,...,s,. These are eigenstates of the respectively hermitian
and unitary

¢y = Z O |8 >< 0,1 (34)
m=0
exp(i¢) = |0>< 1+ +]s—1>< 5|+ exp(i(s + 1)o)|s >< 0] (35)

which is manifestly q-independent, unitary, and only differs from (33) by the last term. Chaichian
and Ellinas’ polar operator is the same as exp(i$), when the reference phase in [6] is chosen to be

¢R = (8 + 1)00

Finally, although the |z >, coherent states do not minimize the N, &03(¢), 31n(¢) uncertainty
relations (32), they do in the PB-case [7] both give and minimize Dirac’s commutation relation,
i.e. in |z >, basis for |z] large

[N, ) =i (36)
Also #3(¢), and sin(¢), show some “correspondence principle” type behavior:

< z|sin(@)|z > _ sin(f)

B E T @)y <N @ I >= 1= (1/2)es1) (7)

and proportionality for < z|co3(d)? — am(d))’lz >.
This is based on work with S.-H. Chiu, M. Fields, and R W Gmy We thank C. K. Zachos

for discussions; the Argonne, Cornell, and Fermilab theory groups for intellectual stimulation; and
U.S. Dept. of Energy Contract No. DE-FG02-86ER 40291 for support.

References

1 A Macfarla.ne J. Phys A22 4581(1989), L. Bledenharn J. Phys A 22, L873(1989)
C.-P. Sun and H.-C. Fu, J. Phys. A22, 1L983(1989); M. Chmchxan and P. Kuhsh Phys.
Lett. B284, 72(1990).

2. R. W. Gray and C. A. Nelson, J. Phys. A23, L945(1990); A. J. Bracken, D. S. McAnally,
R. B. Zhang and M. D. Gould, J. Phys A24, 1379(1991), B. Jurco, Lett. Math. Phys 21,
51(1991). =

3. L. Susskind and J. Glogower, Physics 1, 49,(1964). W. H. Louisell, Phys Lett. 7, 60(1963).

4. S.-H. Chiu, R. W, Gray, C. A. Nelson, Phys Lett. A164, 237(1992); S.-H. Chiu, M. Fields,
C. A. Nelson, unpublished.
5. D. T. Pegg and S. M. Barnett, Europhys. Lett. 6, 483(1988) J. Mod. Opt 38, 7(1989)

6. M. Chaichian and D. Ellinas, J. Phys. A23, L291(1990).
7. M. Fields and C. A. Nelson, SUNY BING 7/27/92.

126



lll. QUANTUM OPTICS
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